
J96J Culshaw: Resonators for Millimeter and Sub-Millin7eter Wavelengths 135

while B varied only + 0.2 about its 11.2 khfc value of

5.8.

For twists of less than 70° a remains constant, while

the approximation that B is a constant degenerates; for

twists of more than 80° the approximation that a is a

constant apparently degenerates, while the approxima-

tion that B is a constant improves.

At first glance the apparent 22 per cent error in as-

suming a equal to a constant for the 80° twist might ap-

pear alarming, but it should be remembered that this

22 per cent error is lmeasured over a 1000 -h’Ic range,

whereas the 80° twist can be utilized in a filter cavity to

produce no more than a 30-Mc bandwidth filter. Ac-

tually at the 3-db points, a differs from the 11.2 kNIc

a

value by less than 1 per cent. The approximation that a

is a constant thus remains valid for twist angles greater

than 80°, as well as for twist angles less than 70°.

The approximation that B is a constant, while being

very good at twist angles of 80° and higher, is beginning

to degenerate for a 70° twist. It is expected that, due

to this variation, the design formulas will degenerate

for bandwidths much in excess of 10 per cent.
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Resonators for Millimeter and

Submillimeter Wavelengths*
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Summary—Further considerations on the mm-wave Fabry-

Perot interferometer are presented. Computed Q values for parallel

metal plate resonators indicate that at spacings around 2.5 cm, values

ranging from 60,000 at 3 mm, to 300,000 at 0.1 mm wavelengths are

possible. The plates must, however, be quite flat. These results are

important for many investigations, and in particular for mm and sub-

mm wave maser research. For the aperture per wavelength ratios

possible here, diffraction effects should be small. Consideration is

given to using curved reflectors or focused radiation in applications

where the fields must be concentrated. For this purpose, re-entrant

conical spherical resonators are treated in detail, as regards operation

in the TEM mode at high orders of interference. Expressions for the

Q and shunt impedance are given, and high values are possible at

mm and sub-mm wavelengths. Quasi-optical methods of coupling

into and out of such a resonator are proposed, and the higher modes

possible in such a resonator are considered. Results indicate that it

could have application to the mm-wave generation problem, and

that it represents a good resonant cavity for solid state research at

mm and sub-mm wavelengths, and for maser applications in par-

ticular.

lNTRODCTCTION

1

N the region of wavelengths extending downwards

from around 1 mm to the long infrared, much im-

portant research needs to be done, and many im-

portant applications arise. At these wavelengths, con-

ventional cavity resonators become extremely minute,

since their dimensions are around one-half wavelength.

For some purposes, cavities of larger dimensions, capa-

* Rerei\-ed by the PGMTT, JLIIY 8, 1960; revised manuscript re-
ceimd, October 31, 1960.

t Natl. Bur. of Standards, Boulder labs., Boulder, CO1O.

ble of sustaining a number of higher order modes, are

possible. This is a difficult procedure, and the difficulties

increase with decreasing wavelength for a given size of

cavity. Cavities much larger in terms of the wavelength,

but which permit mode-free operation, are thus needed.

In particular, the development of such a cavity with a

suitable interaction gap and new methods of input and

output coupling other than conventional waveguides

would greatly assist in the development of a primary

coherent electronic source for these wavelengths.

Referril]g to the reflex kl>-stron, which for many pur-

poses is still the most versatile and simplest of microw-

ave tubes, such a cavity must be capable of bunching

the electron stream, and hence must possess a suitable

interaction gap of small dimensions compared to the

wavelength. It also should have a large resonator vol-

ume for heat dissipation and a high shunf - impedance for

efficient electronic interaction. iYew methods for cou-

pling into and out of the resonator are also necessary.

There are other problems, as well, in the design of such

tubes for very short wavelengths; another very im-

portant one being the provision of an aclequate current

density at these short wavelengths where the area of

the electron beam for efficient interaction with the reso-

nator steadily decreases. This difficulty would certainly

be helped by providing larger, more efficient, and more

suitable resonators. The required current densities in

the resonator gap could possibly be approached with im-

proved cathodes and by the use of suitable magnetic or
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other focusing devices. In any event, such a resonator

development would permit the extension of klystron

techniques to shorter wavelengths, and could lead to

easier construction techniques and higher powers from

tubes presently available at wavelengths extending from

8 mm to around 2.5 mm.

Some progress in this general direction was effected

by the development of the dielectric tube resonator. 1

This was used to produce interaction with highly

bunched electron beams traveling at relativistic veloci-

ties.z Such cavities, however, are still not large enough

in terms of the wavelength, they do not possess high

enough Q values for many purposes, and their use would

seem to be limited. Another possibility which seems to

possess considerable potential for application in all areas

of mm wave research is the mm-wave Fabry-Perot inter-

ferometer. a‘4 While this form of resonator is eminently

suitable for many purposes, there are other applications,

such as the electronic generation problem, or solid-state

research, for which a smaller interaction space is desira-

ble. Thus one might make the reflectors spherical and

use focused radiation between them. Here diffraction

problems arise,5 and while such a system should resonate

at infrared or shorter wavelengths, it may not do so at

longer mm wavelengths, unless it is large. In any event,

it is difficult to confine the field into linear dimensions

even of the order of a wavelength in extent, and such a

degree of confinement is not sufficient for the efficient

bunching of electron streams as in a klystron. Thus, one

must consider the provision of side walls round the

interferometer, and a deformation of this into a cavity

resonator bounded by two re-entrant cones and a sphere.

Such a cavity was considered in the classical paper by

Hansen and Richtmeyer~ on resonators suitable for

klystron oscillators, and it has also received considerable

attention, particular y by Schelkunoff,7, 8 in the treat-

ment of biconical antennas. At longer wavelengths,

other types of resonators proved more suitable. How-

ever, at mm and sub-mm wavelengths, such conven-

tional resonators become very small and serious prob-

1 R. C. Becker and P. D. Coleman, “The dielectric tube reso-
nator: a device for the generation and measurement of millimeter and
submillimeter waves, ” Proc. Symp. on Millimeter Waues, Polytechnic
Inst. of Brooklyn, Brooklyn, N. Y., pp. 191–222; March, 1959.

Z M. D. Sirkis and P. D. Coleman, “The harmodotron—a mega-
volt electronics millimeter wave generator, ” Y. A pp[. P1-3ys., vol. 28,
pp. 944-950; September, 1957.

3 W. Culshaw, “Reflectors for a microwave Fabry-Perot inter-
ferometer, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 221–228; April, 1959.

4 W. Culshaw, “High resolution millimeter wave Fabry-Perot in-
terferometer, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-8, pp. 182–189; March, 1960.

5 G. W. Farnell, “Measured phase distribution in the image space
of a microwave lens,” Canad. J. Pkys., vol. 36, pp. 935–943; July, 1958.

GW. W. Hansen and R. D. Richtmeyer, “On resonators suitable
for klystron oscillators, ” J. Appl. Phys., vol. 10, pp. 189–199; March,
1939.

~ S. A. Schelkunoff, “Electromagnetic Waves, ” D. Van Nostrand
Book Co., Inc., New York, N. Y., pp. 285-290; 1943.

8 S. A. Schelkunoff, “Advanced Antenna Theory, ” John Wiley
and Sons, Inc., New York, N. Y., pp. 32–71; 1952.

lems arise in heat dissipation, low Q factors, low shunt

impedance and in fabrication.

The paper presents a new appraisal of the biconical

spherical resonator in the light of the new developments

in the mm-wave Fabry-Perot interferometer and the

possibility of operating such a biconical resonator at

large orders of interference. This would provide a suita-

ble resonator for the purposes discussed above. Features

which help this approach considerably are that the

coupling into the large biconical resonator is possible by

a whole series of regularly spaced coupling holes as in

the mm-wave interferometer, and optical methods such

as focusing may be used to get the radiation into and

out of such a resonator. Such methods seem highly de-

sirable in this ~vavelength region.

PLANAR hlILLIMETER WAVE INTERFEROMETER

OR RESONATOR

Fig. 1 shows the mm-wave interferometer as used in

transmission measurements. 4 The reflector system may

be regarded as a resonant cavity formed by the parallel

metal plates and the multiple reflections of plane waves

between them. The holes are then exactly analogous to

the coupling holes or irises used in microwave cavity

resonators, and they provide the means for coupling

into and out of the resonance region between the plates,

while preserving the large Q value of the metal plate

region. For small holes, the loading on the interferom-

eter due to the generator and load impedances is small

and can be adjusted by the hole diameter. Side wall

losses are essentially absent except for diffraction effects,

which can be kept small, and which decrease with de-

creasing wavelength. This results in a Q for the inter-

ferometer which increases directly as the order of inter-

ference. Referring to Fig. 1, the field at resonance due

to plane

shown is

waves between the plates with

given by

Eu = – 2jE0 sin (mr z/d),

qH. = 2E0 cos (n~ z/d),

the origin as

(1)

where d is the distance between the plates, E. is a con-

stant, and q = (K/e) ‘Iz is the intrinsic impedance of the

medium between the plates in mks units. The energy

stored and the mean power lost per unit area of the

plates may be deduced from (1), and hence the unloaded

Q determined, viz.,

Q, = A/Ah = mr/(1 – R), (2)

where R = 1 — (8cw/u) 112 is the power-reflection coeff-

icient of the metal, c and I-L are its permittivity and

permeability, usually equal to those of free space, a is

the conductivity, and o is the angular frequency. In

terms of the fringe width Ad between half power points

we may write, using the equation 2d = nA,

Q, = i/Ad = 27r/(1 – R). (3)
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Fig. l—Millimeter wave Fabry-Perot interferometer,

Since R will be around 0.999 for a metal at these fre-

quencies, (3) shows that the metal plates must be quite

flat, within 1/1000 of the operating wavelength.

Table I gives values of QO for wavelengths extending

into the submillizneter region and illustrates the great

advantages of the Fabry-Perot interferometer, since it

would be very difficult, if not impossible, to make con-

ventional cavity resonators for these wavelengths. In

contrast to these results, ideally an unloaded Q value of

some 9000 would be obtained at 1 mm wavelength with

a cylindrical cavity of diameter 0.060 inch operating in

the TEOI,50 mode. This interferometer is thus ideal for

many purposes, permitting the use of relatively large

structures at these very short wavelengths with freedom

from most higher order modes.

TABLE I

COWXTTED UNLOADED Q L:ALUIZS FOR SILVIW PLATES SPACKD
‘2.5 CM APART IN A MM-\t’Av~ INT~RIWROM~TIH<
(CONDtTCTIVIT~ a TAKEN AS 6.139X 10’ MHOS/M).

xmm n

3.125 16
2.0 25
1.0 50
0.5 100
0.1 500

R I Q,

0.99917 60,300
0.99896 75,300
0.99852 106,500
0.99792 150,000
0.99533 333,900

At suitable terminals, the holes may be regarded as

perfett transformers, which enable us to couple into the

metal plate resonator, in a uniform and efficient manner.

Equivalent circuits for the mm-wave Fabry - Perot inter-

ferometer may now be drawn, and are shown in Fig.

2(a) and 2(b) for the transmission and reaction types

respectively. The hole size may now be fixed by equating

the reflectivity of the bulk metal to that deduced by re-

garding the hole as a reactive structure on a transmis-

sion line. q Smaller and larger hole sizes than those given

by this criterion correspond respectively to lower and

higher values of loading on the interferometer than those

given by the matched condition. Such reflectors will

have adequate bandwidth for mm-maser and spectros-

copy applications, and designs can be optimized for

any given wavelength region. The application of the

PERFECTTRANSFORMERS

COUPLINGHOLE
IN

COUPLING HOL13
OUT

(a)

(b)

Fig. 2—Equivalent circuits for interferometer. (a)
Transmission type. (b) Reaction type.

Fabry-Perot interferometer to the problem of mm-wave

lmasers and spectroscopy is under active developnlent.

CURVED OR FOCUSED FABRY-PEROT

RESONATORS

For some experiments and applicaticlns, the planar

type of interferometer or resonator is nclt suitable, Ex-

amples of this occur in solid-state research, optical-

maser work, and electronic interaction with electric

fields. Here, the resonator fields must be concentrated

into a smaller volume, and it is natural to consider the

use of cylindrical or spherical Fabry-Perot plates and

focused radiation to produce concentrated fields in the

vicinity of a focus. Such an arrangement might resclnate

in an analogous way to the plane reflector geometry,

and coupling again be effected by a whole series of cou-

pling holes. Fig. 3 shows a possible arrangement for a

transmission interferometer employing curved reflec-

tors. Either cylindrical or spherical reflectors could be

used with appropriate lenses. The lines showing the con-

centration of the field and the constant-phase fronts

are purely qualitative, but indicate approximately the

field distribution between such plates.

The field distribution near the focus of a converging

spherical wave has received extensive theoretical study. g

With the coherent microwave sources and techniques

now available, the field distribution in such regions can

be experimentally determined. Such work has substan-

tiated the results obtained by appl]-ing scalar diffraction

theory to this problem when the aperture dimensions

are some twenty wavelengths or more i n extent,5 and

the regions of interest are close to the axis and somewhat

distant from the lens. The literature on this subject is

quite extensive, and we shall limit our remarks to those

closely connected with the idea of using curved Fabry -

Perot resonators.

9 M. Born and E. lVolf, ‘{Principles of Optics, ” Pergamon Press,
London, Eng. pp. 434–448; 1959.
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Fig. 3—Focused Fabry-Perot interferometer.

A full treatment of the problem for optics is given in

reference 9, and general expressions are derived for the

field in the focal region. Referring to Fig. 3, isophotes,

or contour lines of intensity 1(P, q) near the focus of a

converging spherical wave, as well as contours of equal

phase, are given. Here P= ~z(a/~) 2, and q= f?p(a/~),

where 2a is the aperture diameter, ~ is the focal length,

(3= 27r/h, and p = (ccz+y’) ’12 is the radial distance in the

focal plane z =0. In optics, the intensity distribution is

symmetrical about the geometrical focal plane and also

about the z axis. Also, the surfaces of constant phase are

surfaces of revolution about the z axis. At a distance

from the focus, the, constant phase surfaces coincide

with the spherical wave fronts of geometrical optics

but become gradually deformed near the focal region.

In the immediate region of the focus, the constant phase

surfaces are plane, and on passing through this region,

they gradually deform and again become spherical, but

with opposite curvature.

In the focal plane z = O, the intensity is given byg

2J,(q) ‘

[1
1(0,q) = —U IO, (4)

where JI is the usual Bessel function. This distribution

is characteristic of the Airy-ring diffraction pattern in

the image plane of an optical lens.l” Along the z axis,

the field intensity is given by

[1

sin P/4 2
I(p, O) = —— 10.

p/4

Eqs. (4) and (5) indicate the degree of

(5)

confinement of

the field possible in the focal region for given ratios of

j/a. The first zero of Yl(q) k at q= 3.83; and for ~/a= 4,

the radius to the zero of the central ring is 2. Sk Along

the z axis, the first zeros occur for z = tfih/2uZ, and for

f/a =4, we obtain z= t 8A.

Farne115 discusses the field in the image space of a

microwave lens, the main differences from optics arising

because of the much smaller aperture to wavelength

ratios possible with microwaves, With an optical lens,

1° Ibid., pp. 394–397.

the field in the focal region is concentrated into smaller

volumes and approximations can be used which are not

necessarily valid for microwaves. Fig. 4 shows measured

contours of constant phase in the image space of a

microwave lens. This had a diameter of 50 cm, a focal

length around 60 cm, and the wavelength used was 3.22

cm. Contours of constant intensity are also given in

reference 5. The same general features discussed above

for light optics are evident; there are, however, differ-

ences in the shape of the contours. Here the constant

phase surfaces and the Airy pattern in the focal plane

are slightly curved, the center of curvature being at the

lens center as shown. Also the center of curvature of the

wave diverging from the focus is at the position of maxi-

mum intensity which is not at the focus, but at a point

some 2 wavelengths nearer the lens. The center of curva-

ture of the converging wave, however, is at the geo-

metrical image or focus. The deviations are due to the

larger angular patterns which occur with microwave

lenses, and at shorter mm and sub-mm wavelengths with

similar aperture sizes, the optics distribution discussed

above would be approached.

CENTEROF CIR~LE 2 CENTERO< CIRCLE3 iENTER oFCIRCLE I

Fig. 4—Measure contours of constant phase in image space of a
microwave lens with R =63 cm, a =25 cm, and k = 3.22 cm. Phase
at geometrical image taken as rr/2 radians. (After G. I\r. Famell,
Canad. J. Phys., vol. 36, p. 935; 1958. )

Matthews and Cullenll have investigated at micro-

waves a converging spherical wave limited by a rec-

tangular aperture. The approximations used in their

analysis correspond to those used in optics, and are

therefore valid when the diffraction pattern in the focal

region is of small extent. Their deductions and measure-

ments, however, give an interesting physical picture of

what happens in the focal region and indicate that there

are variations in axial wavelength in the focal region as

compared to the free space wavelength. Results in the

regions investigated indicated an increase in axial wave-

length, or a decrease in the axial propagation constant

at slmall distances either side of the focus. Linfoot and

Wolf” also deduce that in optics there are regions very

near the focus where the nearly plane constant phase

surfaces are spaced closer together by a factor 1 — az/4f 2

than those in a parallel beam of light of the same wave-

11p, A, NIatthews and .l L. Cullen, “A study of the field dktri-

butiou at an axial focus of a square microwave lens, ” Proc. IEE, Pt.
C., VO]. 103, pp. 449-456; Ju]v, 1956.

M E H, Lillfoot and E. IVolf, “Phase distribution near focus in an

aberrat’ion-free diffrasion image, ” Proc. Phw. Sot. (London), VO~

69, pp. 823-832; November, 1156,
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length. There are also regions of rapid phase variation

at the nulls of the Airy pattern and along the axis.

lVe may sum up the possible use of curved reflectors

for the mm and sub-mm resonator problem as follows.

A spherical or cylindrical converging wavefront limited

by an aperture gives a region near the focus where the

field is concentrated within distances of a few wave-

lengths. At optical wavelengths, spherical or cylindrical

reflectors placed along appropriate phase contours on

either side of the focus should resonate at the appropri-

ate wavelength. As indicated by the work at wave-

lengths of 3,2 cm, there may be departures from ideal

conditions at mm and sub-mm wavelengths, and no such

resonance may be possible. The problem in this respect

needs further investigation. Such resonator types could

thus be useful in optical masers and possibly at very

short mm wavelengths, although close attention to the

preservation of phase shapes in the focal region when

obstacles are inserted would be necessary. Since the field

in the focal region is still some wavelengths in extent,

such a resonator is not suitable for electron bunching or

for harmonic extraction from bunched electron beams.

BICONIC.kL SPHERIC.kL RESONATORS

A. Dimensions, Q T’alues and Shunt Impedance

The cavity resonator bounded by two re-entrant

cones and a sphere, as shown in Fig. 5, was considered

in the early phases of klystron resonator developrnen t

and has also been considered by Schelkunoff.7 These

investigations were concerned with such spherical reso-

nators of radius equal to X/4 or with orders of interfer-

ence of unity. The feature which makes a new appraisal

worthwhile is that such resonators can be operated at

higher orders of interference provided facilities exist for

coupling into and out of such a resonator in a uniform

way and no serious difficulties from higher order modes

are encountered. Such a method is that of a whole series

of coupling holes as used in the planar Fabry-Perot

interferometer. Useful features of such a biconical reso-

nator, especially at mm and sub-mm wavelengths, are

that the resonator becomes larger, the Q increases with

order of interference, and shunt impedance remains

high.

Referring to Fig. 5, if an RF voltage is impressed be-

tween the apices of the cones, the principal or TENI

mode on such a structure is generated. This has the elec-

tric lines coinciding with meridians and the magnetic

lines along circles coaxial with the axis as shown. Such

a system is equivalent to a transmission line of charac-

teristic impedance given by

2. = 120 log cot (+/2), (6)

and expressions for the electric and magnetic fields may

be obtained.7 Resonances occur when the radius lq of the

spherical boundary is equal to A,/4, where n is an

integer referred to as the order of interference. Here we

consider odd values of n or the case of parallel resonance.

42

Fig. 5—Biconical spherical resonator and principal TEM mode.

Standing waves then exist in the resonator, and the Q

value may be determined for any order n of interference.

For equal and opposite cones in the sphere we thus ob-

tain

307r’)2 log cot (4/2)
Q, = ——_

&[log cot (~/2) + P cosec +] ‘
(7)

where # is the cone angle in Fig. 5 and R~ is the resistive

part of the intrinsic impedance of the metal. The paranl-

eter P is given by

P = *[C + log )27r– Ci(m)], (8)

where C is Euler’s constant, equal to 0,5772, and the

function

s‘ Cos t
C’i(.v) = —— dt, X>o.

. t
(9)

Similarly, the shunt impedance at resonance is given by

l’Moo7r[log cot (+/2)]’
z, = —————————–—

R~[log cot (JJ/2) + P cosec +]
(lo)

Apart from changes due to the increased order of

interference n, (7) and (10) are similar to those given b~-

Schelkunoff.7

For n =1, QO is a maximum when ~ = 33.5°, al~d is

equal to 132/R,n; hence QO= 924 for such a copper reso-

nator at h = 1 mm. .qlso, for n = 1, Z, is optimum when

*= 9.2° and equal to 3.74x 104/R~ ohms; hence for

copper Z, = 2.6X 105 ohms at A = 1 mm, It is evident

that such a resonator has a high shunt impedance even

at short wavelengths, which is a desirable feature for a

klystron resonator. However, for z = 1, the diameter is

around 0.020 inch and thus is not very practical. The

Q is also low at short wavelengths for this small order of

interference.

Fig. 6 shows curves of Q,, and shunt impedance Z, for

a copper resonator at a wavelength of 1 mm and order

of interference n = 41. AS for n = 1, Q. is a maximum

when ~ = 33.5°. The optimum angle for Z, depends on n,

and is given by

P cot* – (2P cosec *)/[log cot (4/2)] = 1. (11)
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CONEANGLE# Ill DEGREES

Fig. 6—Unloaded Q values and shunt impedance Zi
of biconical spherical resonator.

Values of Z~ ranging from 75,000 to 100,000 ~ are thus

obtained for n = 41, the diameter of the resonator at

A = 1 mm then being 2 cm. The Q values are also rela-

tively high for this wavelength, ranging up to 16,000.

For a klystron resonator, Zi is the important parameter

and must be as high as possible. For other applications

a higher Q may be required, and can be obtained by in-

creasing n. Thus for n= 101 and ~= 22.5°, we obtain

Q,= 34,200 and Z,= 83,500 ohms, with a resonator di-

ameter of 5 cm. The DX 151 Philips klystron for 4 mm

wavelengths uses a conventional resonator of diameter

1.6 mm, and height 0.7 mm with a value of Zi around

77.000 ohms.13 Such a resonator would thus be ex-

tremely small at A = 1 mm, and Z, would be reduced to

around 38,000 ohms. The advantages of the biconical

resonator are thus apparent.

Further computations for A = 0.1 mm, and n =401 are

shown in Table II; here the increase in Q should be

noted, values of 39,000 now being possible. Due to the

increase in R~ at higher frequencies, Zi decreases but

even at X = 0.1 mm values around 24,000 ohms seem

possible. The diameter of this resonator would again be

around 2 cm at a sub-mm wavelength of 0.1 mm, an

extremely important consideration for many areas of

work.

TABLE II

VARIATYON OE Q VALUES AN_D Snm-rr IMPEDANCE Zj FOR
BICONICAI. RESONATORS AT x= 0.1 MM AND

ORDER OF INTERFERENCE n. =401

$0 10 13 22.5 33.5

go 26,500 30,200 37,000 39,370
t 24,100 24,400 22,300 17,600

For some purposes the resonator formed by a single

re-entrant cone inside a hemisphere, as in Fig. 7, might

be useful. Similar considerations apply to this type, and

general expressions for QO and Z; are then

Q, =
307r’ ?’2log cot (4/2)

(12)
Rm[log cot (+/2) + F’(cosec 1# + 1)] ‘

13B. B. Van Iperen, “Reflex klystrons for millimeter waves, ”
Proc. Sym@. on Millimeter Waues, Polytechnic Inst. of Brooklyn,
Brooklyn, N. Y., pp. 249-250; March, 1959.

and

72007r[log cot (4/2)]’
z, =

R., [log cot (IJ/2) + P(I + cosec fJ)]
- (13)

Both Q. and Z, are thus smaller for this resonator, Z;

having around half the value for two re-entrant cones.

However, such a resonator could be useful in applica-

tions where a number of closely spaced cavities are re-

quired.

EL

Fig. 7—Hemispherical conical resonator.

B. Coupling Considerations

Ideas on possible forms of coupling into such a reso-

nator arise when it is considered as a distortion of the

planar Fabry-Perot interferometer. Hence the design of

the whole array of coupling holes will be similar, except

now they will be on the surface of the spherical portion

and focused radiation must be used as indicated in the

figures. The intrinsic impedance of the principal mode is

that of free space, viz, Eo/H4 = q, and the characteristic

impedance Zc may thus be regarded as derived from

series and parallel combinations of elemental parallel-

plate transmission lines, the number of which are deter-

mined by the hole spacings on the spherical surface.

Since the number of such holes at fixed spacings around

the circle O= constant on the sphere varies as sin 0, a

resultant Z. of the form given by (6) is obtained.

From such general considerations, we deduce that the

impedance transformations through the equally spaced

holes on the spherical surface are identical, since the

electric and magnetic walls into which the cavity can

be divided give rise to a system of equal parallel-plate

transmission lines with intrinsic impedance q. The am-

plitude transmission coefficients are also identical for

all such holes, and since the number of holes around a

given latitude varies as sin 0, and the fields vary as

I/sin 0, the total power transmission from the cavity is

the same along each line of latitude. The holes can thus

be equally spaced along circles of latitude; some adjust-

ment of the final hole along such a circle will, however,

be necessary in general. The same spacings in the 0

direction may also be used, but the lines of hole centers

need not coincide with lines of longitude.
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The biconical resonator may be regarded as a trans-

mission line of length nh/4, and of characteristic im-

pedance Z, given by (6). The impedance across the cone

apices for any uniform impedance Z~ over the spherical

boundary is then given by

and for 1= nA/4, Z = Z.2/Zt. For a coupling hole system

extending over the complete spherical surface, Z~ will

be uniform over the surface and may be deduced from

the equivalent circuit for such a coupling hole. Thus, the

load impedance at the apices can be determined, and

hence the degree of loading as compared with the shunt

impedance Z, of the resonator can be deduced.

Another approach which is useful when only a part

of the spherical surface has coupling holes, and also in

the previous case, is to use the general formulas’ to

determine the Q factor and the shunt impedance Z,. The

impedances transformed from free space through such

holes give rise to increased losses over that portion of the

spherical boundary concerned, and the external Q values

and load impedances can be determined. Thus the result

for the increased power loss due to the load coupling

will be given by

where the limits of integration for q5 and 6 extend over

the coupling region on the sphere, and R is the resistive

part of the load impedance at the spherical boundary.

In this way the effect of various degrees of coupling can

be considered and loaded Q values and load impedances

determined. A number of coupling holes are thus re-

quired, and this approach should be reasonably valid if

the area over which energy is coupled into or out of the

resonator is large compared with the wavelength; other-

wise diffraction effects will be serious. Since such reso-

nators are intended for very short wavelengths this con-

dition can be satisfied.

The coupling may thus be deduced from the equiv-

alent circuit for a single coupling hole in a metal plate,

which is shown in Fig. 8. Values of the susceptances are

given by the following equations.14

approximately. Here a~ refers to the large dimension of

a rectangular waveguide propagating only the dominant

mode, and I Ag’ \ is given in reference 14. For matched

conditions in free space, the transformed normalized

impedance at the inside wall of the sphere is then given

by

Bb’ + j(Ba + BJ(Ba’ + 2BUB, + 1)
z = ————— — . (18)

(B.’ + 2B,3J’ + (Ba + l?,)’

Fig. 8—Perforated metal plate and equivalent transmission
line circuit electric wall —, magnetic wall ----

The phase angle of the reflection coefficient at the spheri-

cal boundary may thus be determined, and the effect

of transformed reactance on the resonance condition

investigated for various hole configurations and wall

thicknesses. This is important since the resonance con-

dition demands a uniform phase shift over the spherical

surface, and the phase changes occurring in regions

where there are coupling holes differ from those at a

metal wall. However, the phase change for holes in thick

walls is not very different from that due to holes in the

thinner walls where coupling is effected. This occurs be-

cause all holes are circular waveguides excited beyond

cut-off, and the reactive contribution to the transformed

impedance is close to that due to the hole at the inner

surface of the sphere.

Thus, areas other than those used for energy transfer

could possibly have thicker walls with holes similar to

those in coupling areas. It may also be possible by

suitable impedance transformations to have holes only

in such coupling regions, with the remaining parts of

the metallic spherical surface undisturbed. This would

be a more satisfactory arrangement, and while the prob-

lem of coupling requires experimental evaluation, it

seems clear that it can be done along the lines described.

~,= I v,’] C,ch 2Tt

()
(16)

HIGHER-ORDER h!ODES

Yll Iho’/ ‘
So far, we have tacitly assumed the existence of only

where in our case B/2 YO = (3a2A)/(2mD3), and the principal mode in the biconical resonator, and we

Iyo’1_
must now consider whether difficulties can arise from

0“232’[1-(%3’1”2 ’17)
the higher-order modes which can also exist in it The

Yo problem has been extensively treated by Schelkunoff in

his work on antennas.8 With an impressed RF voltage

‘4 AT.Marcuvitz, “IVaveguide Handbook, ” M.I.T. Rad. Lab. Ser.,
between the apices of the cones, the modes in question

McGraw-Hill Book Co., Inc., New York, N. Y., pp. 408-412; 1951. are the transverse magnetic spherical ones with ~~, = O.
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As we have seen, in the biconical region a principal

TEM wave exists with the electric field lines terminat-

ing normally to the conical surfaces. A continuation of

this mode into free space is not possible, and in the case

of the biconical antenna, other modes are generated at

the spherical boundary between free space and the ends

of the cone. The boundary conditions at the spherical

boundary between the fields in the antenna region and

the fields of spherical TM waves in free space may then

be satisfied. Fig. 9 shows the electric field configuration

for the first-order TM spherical wave in free space and

in the biconical region respectively. The field patterns

are quite similar, the difference being the presence of

the small loops near the conical conductors which satisfy

the boundary conditions for the electric field. The pat-

terns for modes of higher-order are quite similar, except

that the number of loops increases. Such field configura-

tions are directly analogous to the electric field patterns

of higher-order TMOn modes between parallel plates and

arise from appropriate distortions of such plates. If b is

the spacing between the plates, the cut-off wavelengths

for these modes are given by 2b/n.

(a) (b)

Fig. 9—Electric field of first order TM spherical wave. (a) In free
space. (b) lVith conical conductors. Magnetic lines circles coaxial
with cones.

In the proposed biconical resonator, the fields are en-

closed by a metallic spherical boundary on which the

boundary conditions on the field may be satisfied by

the fields of the dominant TEM wave, the electric field

of which is given by

10 sin .6(1 – 7)
Eo = jq

27rY sin 9 ‘
(19)

where 10 is the maximum current at r =1, and 1 is the

radius of the sphere. 8 Thus, no higher-order modes arise

at such a boundary, and this is still true when the cou-

pling holes are present since these are spaced less than

h/2 apart. The fringing fields at the holes then corre-

spond to non-propagating modes between parallel plates

and represent a localized impedance at the spherical

boundary. It follows then that no higher-order modes

should exist in the resonator when the radius of the in-

put region ~, is very small, or when the cones are pointed.

Such higher-order modes may be generated in the input

region around the apices of the cones if this is finite in

extent, and this must be considered.

Expressions for such fields are given by Schelkunoff8

and are independent of the angle ~. YVe shall be con-

cerned with O component of the electric field, which is

given by

~v(r)~Eo. ———
2TZC sin O

1
+&x ‘– ~ Mn(cos e)sn’(&). (20)

. n(n + 1) dd

Here ~~n(cos 0) = ~ [Pm(cos 19)–P.( --COS 0) ], P. being

the Legendre function of order n, and

sn(pr) = AnJnn(prj + BnJv?zn(@’) , (21)

where -Tnn(&) and lVn~((3r) are the normalized Bessel

functions of the first and second kind, and An and B.

are constants determined from the boundary conditions.

Values of n over which the summation in (20) is made

are determined by the relation

Mn(cos *) = o, (22)

which corresponds to the condition ~,= O on the conical

surfaces. Generally, the values of n are not integral and

may be determined from the formulas

‘2(’)=[(+3+1’2-:’ ’23)
where m=l,2,3, . . . .

The component Eo of the electric field must vanish at

the spherical boundary for all values of 0, and hence

from (20) we must have

Sn’(f?l) = o, (24)

-expressing the resonance condition for any higher-order

mode. For perturbations of the input region around the

cone apices, the field at a specific input radius ri may be

expanded in terms of the orthogonal properties of

Legendre functions and their derivatives; to obtain

E. =,-’

L“-”sin’[: 12 ‘ ‘2’)

+ 1)] = En. (26)

m and B. in (21) are nowThe values of the constants A,

determined from (24) and (26) and will be small if the

radius r, is small. Hence for pointed cones in close prox-

imity at the center, operation in the TENT mode without

serious excitation of unwanted modes is feasible. This
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also follows, because lVn,, ((3r~) becomes infinite when

r%--xI, and hence B. must be zero in this case.

As an approximation to the resonance condition we

may assume that E,, = O for small input regions or values

of r,. Then we find from (26) that

B,L/.4n = – J’?2n(@Y,)/J1’’ ?2n(p7%), (27)

and hence (24) becomes

J’?2n(@) .V’?2n(&L) – lv’)ln(pl)J’}2,, (07,) = o. (28)

But it follows from (27) that B./A. tends to zero for

small values of ~r,, particularly for large values of n.

Hence for small perturbations of the input region, the

resonance condition for higher modes is given by

J’?27,(B1) = o, (29)

and we have already noted that the amplitudes of such

modes will also be small in this case. Such higher modes

would also not exist if Y,E?(Y,) = O for all 0, which occurs

when the apices are joined by a metallic sphere in the

input region. Other perturbations can be considered for

specific cases, such as for a klystron type resonator, and

would have to be investigated. The prime criterion is

that the transition of the spherical fields of the TEM

mode to those in the input region should be smooth

and the field patterns matched as far as is possible.

This can be approached by suitable shaping in such

regions, and hence mode generation kept small.

Eq. (29) represents the condition for resonance in a

higher-order mode, and for the large values of ~1 ap-

plicable here, we may write

Jn,,(fll) N sin (fll – n~/2),

and hence

Y)2,L(B1 = Cos (Bl – n7r/2), (30)

\vhich gives the condition for resonance as

l=(2w+l+;z)A/4. m=l,2,3, . . . . (31)

Here ?Z is not an integer in general, and this resonance

condition can differ from that required for the principal

mode. Thus even though higher-order modes are pos-

sible, depending on the shape of the input region be-

tween the cones, it may be possible to differentiate

against them as regards resonance. We remark again

that for small input regions, or perturbations, the ampli-

tudes of such modes will be small and, in general, may

be kept small by suitable transitions between the field

regions in the resonator.

CoNcLUS1ONi

The basic ideas presented here appear to have com

siderable promise and significance for future work at

mm and sub-mm wavelengths. Some results on a planar

type of Fabry-Perot interferometer with high resolution

may have alreacl]- been given. ~ This interferometer

represents the solution to the wavemeter problem for

this wavelength region. The very high Q values already

obtained at 6 mm wavelengths and the increases possible

at very short wavelengths indicate its great potential

use in all phases of millimeter-wave spectroscopy and

maser research. A gaseous maser at a wavelength of

3.4 mm, using such an interferometer as the resonator,

is under active development. Applications of this inter-

ferometer to solid state masers at sub-mm wavelengths

are also feasible. As indicated, the curved reflector or

focused type of Fabry-Perot interferometer may find

similar applications at very short sub-mm or infrared

wavelengths, and it represents an interesting problem

for future investigation.

The new developments on the biconical spherical reso-

nator which stem from the Fabry-Perot interferometer

investigations appear quite significant. Suitable reso-

nators are needed for electronic generation at mm vvave-

lengths, for solicl state masers at mm and sub-mm wave-

lengths, and for many other areas of research in this im-

portant wavelength region. The biconical resonator is a

possible solution to this problem. The c{evelopme nt of

such a klystron resonator at reasonable orders of inter-

ference would materially help in the major problems of

small size, circuit losses and heat dissipation in corlven-

tional resonators at these short wavelengths. There re-

mains the problem of obtaining the required current

densities from cathodes presently available, since the

efficiency of electronic interaction with the resonator

depends on the gap diameter as well as on the transit

time across the gap. IS However, the use of such a reso-

nator would certainly assist in the generation of still

shorter mm wavelengths, and would possibly permit

greater ease in fabrication and greater power outputs

to be obtained at wavelengths now possible. Higher-

order modes in such a resonator have been discussed,

and relatively mode-free operation should be possible.

Further work must be done on the investigation of these,

and on mechanical tuning methods.

In solid-state maser research this cavity represents a

possible solution to the difficult problem of a resonator

for a two-level, solid-state maser. This may well repre-

sent one method of obtaining relatively high-pulsed

powers at mm and sub-mm wavelengths. 15 One of the

major problems, that of obtaining a high Q cavity, ap-

pears to be adequately met by the bico [nical resonator,

and for ideal conical geometries inside the sphere, mode

troubles should not arise. Specimen shapes would con-

form to the field geometry- at the cone apices or conl-

pletely fill Jhe cavity with the dc magnetic field suitably

oriented along the axes of the cones, or along any other

preferred direction. The proposed method of coupling

would be extremely desirable in all such areas, since it

would eliminate the necessity for long lengths of small

waveguide into the low temperature bath. The Q of the

cavity would also increase at low temperatures. Similar

‘5 J. R. Singer, “h’Iasers,” John Wi!ey and Son., Inc., New York,
N. l“., pp. 71–87; 1959.
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remarks apply to the three-level, solid-state maser.

Although further development of these resonators is

required, such developments appear feasible in contrast

to the present difficulties in applying conventional reso-

nators to mm and sub-mm wavelengths. Such difficulties

are very severe and most probably conventional reso-

nators are impractical. There appears to be no reason

why the ideas presented here should not be intensively

pursued, as the rewards and knowledge to be gained

from this virtually unexplored region of the electro-

magnetic spectrum are very great.

Note added in @ooj: The biconical spherical resonator

has now been operated very satisfactorily by Dr. R. W.

Zimmerer at wavelengths around 8 mm. The diameter

of the sphere used was 4 inches, and the cone angle ~

was 45°. Coupling holes after the manner described were

used only in areas illuminated by the focused radiation.

Both quarter-wavelength and half-wavelength reso-

nances were observed and were the dominant ones. The

Q value approaches the theoretical one, and higher mode

effects are small.
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A Recording Microwave Spectrograph*

D. ILIAS~, MEMBER, IRE, AND G. BOUDOURIS~, SENIOR MEMBER IRE

Summarg—The principle of operation and the fundamentals of
realization of a recording microwave spectrograph designed for use

in the study of the absorption and the index of refraction of gases un-

der medium pressures (1 mm Hg to 1 atm) are presented. The ap-

paratus results from a similar spectrograph with synchroscope, in

which the responses of the cavity resonators are interpreted by

means of a pulse method. The high performances of the apparatus

render its use advantageous, not only as a spectrograph, but also as

an accurate recording refractometer, as well as a direct-reading Q-

meter.

1. INTRODUCTION

~ HE IDEA of the application of the pulse tech-

Jl nique to microwave spectrographs with cavity

resonators [12 ] was originally suggested in 1953

by Professor A. Gozzini of the University of Piss (Italy)

and his coworkers [2d ]. Spectrographs of this type, al-

though subject to continuous improvements, have been

constructed in Piss (Istituto di Fisica), in Paris (Labo-

ratoire de Physique de l’Atmosph&e) and in Amsterdam

(Natuurkundig Laboratorium Universiteit). The new

experimental setup has already been used successfully

in various investigations [3 ]– [7 ].

The electronic indicator of this apparatus is an oscil-

Iograph used as a synchroscope. The result of the meas-

* Received by the PGMTT, August 4, 1960; revised manuscript
received October 31. 1960.

~ Laboratoire de Physique de l’Atnlosph?re, Faculty of Sciences,
the Sorbonne Paris, France.

~ Laboratoire de Spectroscope Hertzienne, Faculty of Sciences,
Sorbonne University, Paris, France. Formerly with Laboratoire de
Physique de l’Atmosph&e.

urement is given by the relative positions of the pulses

which appear on the screen of the synchroscope. In the

following, we will refer to this apparatus as the “spectro-

graph with synchroscope. ”

The work described here makes use of this spectro-

graph to function as a recording instrument. As an out-

put indicator, the synchroscope is replaced by an auto-

matic recorder. The absorption coefficient or the index

of refraction is recorded as a function of the pressure of

the gas. The apparatus works, as does the previously

mentioned spectrograph with synchroscope, in the

centimetric (as well as in the millimetric) region of radio

waves and is used in the study of gases under medium

pressures (from about 1 mm Hg to 1 atm).

This function has been obtained through suitable

modifications of the electronic parts of the instrument,

especially those of the pulsers. The resulting recording

spectrograph extends the possibilities of research in the

field of microwave spectroscopy since it can also be used

as a refractometer and as a Q-meter.

II. THE PRINCIPLE OF THE SPECTROGRAPH

WITH SYNCHROSCOPE

The original spectrograph with synchroscope has been

the subject of previous papers [2a,], [5]. Briefly its

principle is as follows.

The block diagram is shown in Fig. 1. The energy of

the microwave source (a klystron) is frequency modu-

lated by means of an isosceles triangular signal. The

modulated energy is guided both to the channel of meas-


