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while B varied only +0.2 about its 11.2 kMc value of
5.8.

For twists of less than 70° ¢ remains constant, while
the approximation that B is a constant degenerates; for
twists of more than 80° the approximation that a is a
constant apparently degenerates, while the approxima-
tion that B is a constant improves.

At first glance the apparent 22 per cent error in as-
suming ¢ equal to a constant for the 80° twist might ap-
pear alarming, but it should be remembered that this
22 per cent error is measured over a 1000-Mc range,
whereas the 80° twist can be utilized in a filter cavity to
produce no more than a 30-Mc bandwidth filter. Ac-
tually at the 3-db points, a differs from the 11.2 kMc
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value by less than 1 per cent. The approximation that a
is a constant thus remains valid for twist angles greater
than 80°, as well as for twist angles less than 70°.

The approximation that B is a constant, while being
very good at twist angles of 80° and higher, is beginning
to degenerate for a 70° twist. It is expected that, due
to this variation, the design formulas will degenerate
for bandwidths much in excess of 10 per cent. -

ACRNOWLEDGMENT

The author would like to express his thanks to 5. F.
Jankowski and J. D. Deith for experimental assistance,
and to D. H. Ring, E. A. Marcatili, and others at the
Holmdel laboratory for many informative discussions.

Resonators for Millimeter and
Submillimeter Wavelengths®

WILLIAM CULSTAWT, SENIOR MEMBER, IRE

Summary—Further considerations on the mm-wave Fabry-
Perot interferometer are presented. Computed Q values for parallel
metal plate resonators indicate that at spacings around 2.5 cm, values
ranging from 60,000 at 3 mm, to 300,000 at 0.1 mm wavelengths are
possible. The plates must, however, be quite flat. These results are
important for many investigations, and in particular for mm and sub-
mm wave maser research. For the aperture per wavelength ratios
possible here, diffraction effects should be small. Consideration is
given to using curved reflectors or focused radiation in applications
where the fields must be concentrated. For this purpose, re-entrant
conical spherical resonators are treated in detail, as regards operation
in the TEM mode at high orders of interference. Expressions for the
QO and shunt impedance are given, and high values are possible at
mm and sub-mm wavelengths. Quasi-optical methods of coupling
into and out of such a resonator are proposed, and the higher modes
possible in such a resonator are considered. Results indicate that it
could have application to the mm-wave generation problem, and
that it represents a good resonant cavity for solid state research at
mm and sub-mm wavelengths, and for maser applications in par-
ticular.

INTRODUCTION

from around 1 mm to the long infrared, much im-
portant research needs to be done, and many im-
portant applications arise. At these wavelengths, con-
ventional cavity resonators become extremely minute,
since their dimensions are around one-hall wavelength.
For some purposes, cavities of larger dimensions, capa-

I[:N the region of wavelengths extending downwards

* Received by the PGMTT, July 8, 1960; revised maunuscript re-
ceived, October 31, 1960.
1 Natl. Bur. of Standards, Boulder Labs., Boulder, Colo.

ble of sustaining a number of higher order modes, are
possible. This is a difficult procedure, and the difficulties
increase with decreasing wavelength for a given size of
cavity. Cavities much larger in terms of the wavelength,
but which permit mode-free operation, are thus needed.
In particular, the development of such a cavity with a
suitable interaction gap and new methods of input and
output coupling other than conventional waveguides
would greatly assist in the development of a primary
coherent electronic source for these wavelengths.
Referring to the reflex klystron, which for many pur-
poses is still the most versatile and simplest of micro-
wave tubes, such a cavity must be capable of bunching
the electron stream, and hence must possess a suitable
interaction gap of small dimensions compared to the
wavelength. It also should have a large resonator vol-
ume for heat dissipation and a high shunt impedance for
efficient electronic interaction. New methods for cou-
pling into and out of the resonator are also necessary.
There are other problems, as well, in the design of such
tubes for very short wavelengths; another very im-
portant one being the provision of an adequate current
density at these short wavelengths where the area of
the electron beam for efficient interaction with the reso-
nator steadily decreases. This difficulty would certainly
be helped by providing larger, more efficient, and more
suitable resonators. The required current densities in
the resonator gap could possibly be approached with im-
proved cathodes and by the use of suitable magnetic or
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other focusing devices. In any event, such a resonator
development would permit the extension of klystron
techniques to shorter wavelengths, and could lead to
easier construction techniques and higher powers from
tubes presently available at wavelengths extending from
8 mm to around 2.5 mm.

Some progress in this general direction was effected
by the development of the dielectric tube resonator.?
This was used to produce interaction with highly
bunched electron beams traveling at relativistic veloci-
ties.? Such cavities, however, are still not large enough
in terms of the wavelength, they do not possess high
enough Q values for many purposes, and their use would
seem to be limited. Another possibility which seems to
possess considerable potential for application in all areas
of mm wave research is the mm-wave Fabry-Perot inter-
ferometer.?* While this form of resonator is eminently
suitable for many purposes, there are other applications,
such as the electronic generation problem, or solid-state
research, for which a smaller interaction space is desira-
ble. Thus one might make the reflectors spherical and
use focused radiation between them. Here diffraction
problems arise,® and while such a system should resonate
at infrared or shorter wavelengths, it may not do so at
longer mm wavelengths, unless it is large. In any event,
it is difficult to confine the field into linear dimensions
even of the order of a wavelength in extent, and such a
degree of confinement is not sufficient for the efficient
bunching of electron streams as in a klystron. Thus, one
must consider the provision of side walls round the
interferometer, and a deformation of this into a cavity
resonator bounded by two re-entrant cones and a sphere.
Such a cavity was considered in the classical paper by
Hansen and Richtmeyer® on resonators suitable for
klystron oscillators, and it has also received considerable
attention, particularly by Schelkunoff,”® in the treat-
ment of biconical antennas. At longer wavelengths,
other types of resonators proved more suitable. How-
ever, at mm and sub-mm wavelengths, such conven-
tional resonators become very small and serious prob-

1 R. C. Becker and P. D. Coleman, “The dielectric tube reso-
nator: a device for the generation and measurement of millimeter and
submillimeter waves,” Proc. Symp. on Millimeter Waves, Polytechnic
Inst. of Brooklyn, Brooklyn, N. Y., pp. 191-222; March, 1959.

¢ M. D. Sirkis and P. D. Coleman, “The harmodotron—a mega-
volt electronics millimeter wave generator,” J. A ppl. Phys., vol. 28,
pp. 944-950; September, 1957,

3 W. Culshaw, “Reflectors for a microwave Fabry-Perot inter-
ferometer,” IRE TrANS. ON M1CROWAVE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 221-228; April, 1959.

4+ W. Culshaw, “High resolution millimeter wave Fabry-Perot in-
terferometer,” IRE TRaNs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-8, pp. 182-189; March, 1960.

5 G. W. Farnell, “Measured phase distribution in the image space
of a microwavelens,” Canad. J, Phys.,vol. 36, pp. 935-943; July, 1958.

8 W. W. Hansen and R. D. Richtmeyer, “On resonators suitable
for klystron oscillators,” J. 4 ppl. Phys., vol. 10, pp. 189-199; March,
1939.

7 S. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand
Book Co., Inc., New York, N. Y., pp. 285-290; 1943.

8 S. A. Schelkunoff, “Advanced Antenna Theory,” John Wiley
and Sons, Inc., New York, N. Y., pp. 32-71; 1952.

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

March

lems arise in heat dissipation, low Q factors, low shunt
impedance and in fabrication.

The paper presents a new appraisal of the biconical
spherical resonator in the light of the new developments
in the mm-wave Fabry-Perot interferometer and the
possibility of operating such a biconical resonator at
large orders of interference. This would provide a suita-
ble resonator for the purposes discussed above. Features
which help this approach considerably are that the
coupling into the large biconical resonator is possible by
a whole series of regularly spaced coupling holes as in
the mm-wave interferometer, and optical methods such
as focusing may be used to get the radiation into and
out of such a resonator. Such methods seem highly de-
sirable in this wavelength region.

PLANAR MILLIMETER WAVE INTERFEROMETER
OR RESONATOR

Fig. 1 shows the mm-wave interferometer as used in
transmission measurements.* The reflector system may
be regarded as a resonant cavity formed by the parallel
metal plates and the multiple reflections of plane waves
between them. The holes are then exactly analogous to
the coupling holes or irises used in microwave cavity
resonators, and they provide the means for coupling
into and out of the resonance region between the plates,
while preserving the large Q value of the metal plate
region. For small holes, the loading on the interferom-
eter due to the generator and load impedances is small
and can be adjusted by the hole diameter. Side wall
losses are essentially absent except for diffraction effects,
which can be kept small, and which decrease with de-
creasing wavelength. This results in a Q for the inter-
ferometer which increases directly as the order of inter-
ference. Referring to Fig. 1, the field at resonance due
to plane waves between the plates with the origin as
shown is given by

E, = — 27Eq sin (n7 z/d),
nH, = 2E, cos (nr z/d), (1)

where d 1s the distance between the plates, E, is a con-
stant, and 7= (u/€) % is the intrinsic impedance of the
medium between the plates in mks units. The energy
stored and the mean power lost per unit area of the
plates may be deduced from (1), and hence the unloaded
Q determined, viz.,

Qs = \/A\ = nr/(1 — R), (2)

where R=1—(8ew/0)1? is the power-reflection coeffi-
cient of the metal, ¢ and u are its permittivity and
permeability, usually equal to those of free space, ¢ is
the conductivity, and o is the angular frequency. In
terms of the fringe width Ad between half power points
we may write, using the equation 2d =n)\,

Q¢ = NAd = 2x/(1 — R). 3)
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METAL PLATE REFLECTORS
AND COUPLING HOLES

Fig. 1—Millimeter wave Fabry-Perot interferometer.

Since R will be around 0.999 for a metal at these fre-
quencies, (3) shows that the metal plates must be quite
flat, within 1/1000 of the operating wavelength.

Table I gives values of Qy for wavelengths extending
into the submillimeter region and illustrates the great
advantages of the Fabry-Perot interferometer, since it
would be very difficult, if not impossible, to make con-
ventional cavity resonators for these wavelengths. In
contrast to these results, ideally an unloaded Q value of
some 9000 would be obtained at 1 mm wavelength with
a cylindrical cavity of diameter 0.060 inch operating in
the TEg 5 mode. This interferometer is thus ideal for
many purposes, permitting the use of relatively large
structures at these very short wavelengths with freedom
from most higher order modes.

TABLE 1

COMPUTED UNLOADED Q VALUES FOR SILVER PLATES SPACED
2.5 CM Aprart 1N A MM-WAVE INTERFEROMETER
(ConpucTIvITY ¢ TAKEN As 6.139 X107 Muos/M ).

)\mm n R QO

3.125 16 0.99917 60,300
2.0 25 0.99896 75,300
1.0 50 0.99852 106,500
0.5 100 0.99792 150,000
0.1 500 0.99533 333.900

At suitable terminals, the holes may be regarded as
perfect transformers, which enable us to couple into the
metal plate resonator, in a uniform and efficient manner.
Equivalent circuits for the mm-wave Fabry-Perot inter-
ferometer may now be drawn, and are shown in Fig.
2(a) and 2(b) for the transmission and reaction types
respectively. The hole size may now be fixed by equating
the reflectivity of the bulk metal to that deduced by re-
garding the hole as a reactive structure on a transmis-
sion line.® Smaller and larger hole sizes than those given
by this criterion correspond respectively to lower and
higher values of loading on the interferometer than those
given by the matched condition. Such reflectors will
have adequate bandwidth for mm-maser and spectros-
copy applications, and designs can be optimized for
any given wavelength region. The application of the
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Fig. 2—Equivalent circuits for interferometer. (a)
Transmission type. (b) Reaction type.

Fabry-Perot interferometer to the problem of mm-wave
masers and spectroscopy is under active development.

CurveDp OR Focusep FaBrY-PEROT
RESONATORS

For some experiments and applications, the planar
type of interferometer or resonator is not suitable. Ex-
amples of this occur in solid-state research, opiical-
maser work, and electronic interaction with electric
fields. Here, the resonator fields must be concentrated
into a smaller volume, and it is natural to consider the
use of cylindrical or spherical Fabry-Perot plates and
focused radiation to produce concentrated fields in the
vicinity of a focus. Such an arrangement might resonate
in an analogous way to the plane reflector geometry,
and coupling again be effected by a whole series of cou-
pling holes. Fig. 3 shows a possible arrangement for a
transmission interferometer employing curved reflec-
tors. Either cylindrical or spherical reflectors could be
used with appropriate lenses. The lines showing the con-
centration of the field and the constant-phase fronts
are purely qualitative, but indicate approximately the
field distribution between such plates.

The field distribution near the focus of a converging
spherical wave has received extensive theoretical study.®
With the coherent microwave sources and techniques
now available, the field distribution in such regions can
be experimentally determined. Such work has substan-
tiated the results obtained bv applving scalar diffraction
theory to this problem when the aperture dimensions
are some twenty wavelengths or more in extent,® and
the regions of interest are close to the axis and somewhat
distant from the lens. The literature on this subject is
quite extensive, and we shall limit our remarks to those
closely connected with the idea of using curved Fabry-
Perot resonators.

9 M. Born and E. Wolf, “Principles of Optics,” Pergamon Press,
London, Eng. pp. 434—148; 1959.
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DIFFRACTION
PATTERN

SPHERICAL OR CYLINDRICAL REFLECTORS

Fig. 3—Focused Fabry-Perot interferometer.

A {full treatment of the problem for optics is given in
reference 9, and general expressions are derived for the
field in the focal region. Referring to Fig. 3, isophotes,
or contour lines of intensity I(p, ¢) near the focus of a
converging spherical wave, as well as contours of equal
phase, are given. Here p=pz(a/f)? and g¢=pBpla/f),
where 2a is the aperture diameter, f is the focal length,
B=2m/\, and p=(x%+4y?)1/? is the radial distance in the
focal plane z=0. In optics, the intensity distribution is
symmetrical about the geometrical focal plane and also
about the z axis. Also, the surfaces of constant phase are
surfaces of revolution about the 2 axis. At a distance
from the focus, the. constant phase surfaces coincide
with the spherical wave fronts of geometrical optics
but become gradually deformed near the focal region.
In the immediate region of the focus, the constant phase
surfaces are plane, and on passing through this region,
they gradually deform and again become spherical, but
with opposite curvature.

In the focal plane z=0, the intensity is given by®

10, ) = [ﬂq@]l 0

where J; is the usual Bessel function. This distribution
is characteristic of the Airy-ring diffraction pattern in
the image plane of an optical lens.’® Along the z axis,
the field intensity is given by

sin p/—lir]o' 5)

e

Egs. (4) and (5) indicate the degree of confinement of
the field possible in the focal region for given ratios of
f/a. The first zero of Ji(g) is at ¢=3.83; and for f/a =4,
the radius to the zero of the central ring is 2.5\, Along
the z axis, the first zeros occur for z= 4 f?\/24?, and for
f/a=4, we obtain z= £ 8\.

Farnell® discusses the field in the image space of a
microwave lens, the main differences from optics arising
because of the much smaller aperture to wavelength
ratios possible with microwaves. With an optical lens,

H@®=[

10 1bid., pp. 394-397.
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the field in the focal region is concentrated into smaller
volumes and approximations can be used which are not
necessarily valid for microwaves. Fig. 4 shows measured
contours of constant phase in the image space of a
microwave lens. This had a diameter of 50 cm, a focal
length around 60 cm, and the wavelength used was 3.22
cm. Contours of constant intensity are also given in
reference 5. The same general features discussed above
for light optics are evident; there are, however, differ-
ences in the shape of the contours. Here the constant
phase surfaces and the Airy pattern in the focal plane
are slightly curved, the center of curvature being at the
lens center as shown. Also the center of curvature of the
wave diverging from the focus is at the position of maxi-
mum intensity which is not at the focus, but at a point
some 2 wavelengths nearer the lens. The center of curva-
ture of the converging wave, however, is at the geo-
metrical image or focus. The deviations are due to the
larger angular patterns which occur with microwave
lenses, and at shorter mm and sub-mm wavelengths with
similar aperture sizes, the optics distribution discussed
above would be approached.

SGREEN ,“ORCLE NOT
-351

-30m -25¢

R -0 -
DISTANGE FROM GEOMETRICAL IMAGE\IN WAVELENGTHS

CENTER OF CIRGLE 2 CENTER OF/CIRGLE 3 CENTER OF CIRGLE |

Fig. 4—Measure contours of constant phase in image space of a
microwave lens with R=63 cm, a =25 cm, and A=3.22 cm. Phase
at geometrical image taken as =/2 radians. (After G. W. Farnell,
Canad. J. Phys., vol. 36, p. 935; 1958.)

Matthews and Cullen®! have investigated at micro-
waves a converging spherical wave limited by a rec-
tangular aperture. The approximations used in their
analysis correspond to those used in optics, and are
therefore valid when the diffraction pattern in the focal
region is of small extent. Their deductions and measure-
ments, however, give an interesting physical picture of
what happens in the focal region and indicate that there
are variations in axial wavelength in the focal region as
compared to the free space wavelength. Results in the
regions investigated indicated an increase in axial wave-
length, or a decrease in the axial propagation constant
at small distances either side of the focus. Linfoot and
Wolf'? also deduce that in optics there are regions very
near the focus where the nearly plane constant phase
surfaces are spaced closer together by a factor 1 —a?/4f?
than those in a parallel beam of light of the same wave-

P A. Matthews and A. L. Cullen, “A study of the field distri-
bution at an axial focus of a square microwave leus,” Proc. IEE, Pt.
C., vol. 103, pp. 449-4356; July, 1956.

12 £, H. Linfoot and E. Wolf, “Phase distribution near focus in an
aberration-free diffrasion image,” Proc. Phys. Soc. (London), vol
69, pp. 823-832; November, 1956.
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length. There are also regions of rapid phase variation
at the nulls of the Airy pattern and along the axis.

We may sum up the possible use of curved reflectors
for the mm and sub-mm resonator problem as follows.
A spherical or cylindrical converging wavefront limited
by an aperture gives a region near the focus where the
field is concentrated within distances of a few wave-
lengths. At optical wavelengths, spherical or cylindrical
reflectors placed along appropriate phase contours on
either side of the focus should resonate at the appropri-
ate wavelength. As indicated by the work at wave-
lengths of 3.2 cm, there may be departures from ideal
conditions at mm and sub-mm wavelengths, and no such
resonance may be possible. The problem in this respect
needs further investigation. Such resonator types could
thus be useful in optical masers and possibly at very
short mm wavelengths, although close attention to the
preservation of phase shapes in the focal region when
obstacles are inserted would be necessary. Since the field
in the focal region is still some wavelengths in extent,
such a resonator is not suitable for electron bunching or
for harmonic extraction from bunched electron beams.

BicoNicAL SPHERICAL RESONATORS
A. Dimensions, Q Values and Shunt Impedance

The cavity resonator bounded by two re-entrant
cones and a sphere, as shown in Fig. 5, was considered
in the early phases of klystron resonator development
and has also been considered by Schelkunoff.” These
investigations were concerned with such spherical reso-
nators of radius equal to A/4 or with orders of interfer-
ence of unity. The feature which makes a new appraisal
worthwhile is that such resonators can be operated at
higher orders of interference provided facilities exist for
coupling into and out of such a resonator in a uniform
way and no serious difficulties from higher order modes
are encountered. Such a method is that of a whole series
of coupling holes as used in the planar Fabry-Perot
interferometer. Useful features of such a biconical reso-
nator, especially at mm and sub-mm wavelengths, are
that the resonator becomes larger, the Q increases with
order of interference, and shunt impedance remains
high.

Referring to Fig. 5, if an RF voltage is impressed be-
tween the apices of the cones, the principal or TEM
mode on such a structure is generated. This has the elec-
tric lines coinciding with meridians and the magnetic
lines along circles coaxial with the axis as shown. Such
a system is equivalent to a transmission line of charac-
teristic impedance given by

Z, = 120 log cot (/2), (6)

and expressions for the electric and magnetic fields may
be obtained.” Resonances occur when the radius /g of the
spherical boundary is equal to #A/4, where # is an
integer referred to as the order of interference. Here we
consider odd values of # or the case of parallel resonance.
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ELECTRIC FIELD

Fig. 5—Biconical spherical resonator and principal TEM wmode.

Standing waves then exist in the resonator, and the Q
value may be determined for any order # of interference.
For equal and opposite cones in the sphere we thus ob-
tain

30721 log cot (¥/2)
Ru[log cot (¥/2) + P cosecy]

Qo = (7

where ¥ is the cone angle in Fig. 5 and R,, is the resistive
part of the intrinsic impedance of the metal. The param-
eter P is given by

= $[C + log nr — Ci(nm)], (8)

where C is Euler’s constant, equal to 0.5772, and the
function

. * cos t
Ci(x) =f —t-ﬁ dt, x> 0. (9)

Similarly, the shunt impedance at resonance is given by

14400 [log cot (¢/2)]2
= — : (10)
R, [log cot (¥/2) + P cosec ¢]

Apart from changes due to the increased order of
interference #, (7) and (10) are similar to those given by
Schelkunoff.”

For n=1, Qp is a maximum when ¢ =33.5°, and is
equal to 132/R,,; hence Q=924 for such a copper reso-
nator at A=1 mm. Also, for =1, Z, is optimum when
¥=9.2° and equal to 3.74X10%/ R, ohms; hence for
copper Z,=2.6X10° ohms at A=1 mm, It is evident
that such a resonator has a high shunt impedance even
at short wavelengths, which is a desirable feature for a
klystron resonator. However, for =1, the diameter is
around 0.020 inch and thus is not very practical. The
Q is also low at short wavelengths for this small order of
interference.

Fig. 6 shows curves of Q, and shunt impedance Z, for
a copper resonator at a wavelength of 1 mm and order
of interference n=41. As for n=1, Q, is a maximum
when ¢ = 33.5°. The optimum angle for Z, depends on 7,
and is given by

P coty — (2P cosec ¥)/[log cot (¥/2)] = 1. (11)
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Fig. 6—Unloaded Q values and shunt impedance Z;
of biconical spherical resonator.

Values of Z; ranging from 75,000 to 100,000 Q are thus
obtained for =41, the diameter of the resonator at
A=1 mm then being 2 cm. The Q values are also rela-
tively high for this wavelength, ranging up to 16,000.
For a klystron resonator, Z; is the important parameter
and must be as high as possible. For other applications
a higher Q may be required, and can be obtained by in-
creasing n. Thus for =101 and Y =22.5°, we obtain
Q0=34,200 and Z,=83,500 ohms, with a resonator di-
ameter of 5 cm. The DX 151 Philips klystron for 4 mm
wavelengths uses a conventional resonator of diameter
1.6 mm, and height 0.7 mm with a value of Z; around
77.000 ohms.!® Such a resonator would thus be ex-
tremely small at A=1 mm, and Z, would be reduced to
around 38,000 ohms. The advantages of the biconical
resonator are thus apparent.

Further computations for A=0.1 mm, and #=401 are
shown in Table II; here the increase in Q should be
noted, values of 39,000 now being possible. Due to the
increase in R, at higher frequencies, Z; decreases but
even at A=0.1 mm values around 24,000 ohms seem
possible. The diameter of this resonator would again be
around 2 cm at a sub-mm wavelength of 0.1 mm, an
extremely important consideration for many areas of
work.

TABLE 11

VARIATION OF () VALUES AND SHUNT [MPEDANCE Z; FOR
BicoNicAL RESONATORS AT A=0.1 MM anD
ORDER OF INTERFERENCE =401

o l 10 13 l 22.5 33.5
0o 26,500 30,200 37,000 39,370
Z, 24,100 24,400 22,300 17,600

For some purposes the resonator formed by a single
re-entrant cone inside a hemisphere, as in Fig. 7, might
be useful. Similar considerations apply to this type, and
general expressions for @y and Z; are then

B 3072 n log cot (¥/2)
Qo = Ry [log cot (¥/2) + P(cosecy + 1)]

o (12)

13 B, B. Van Iperen, “Reflex klystrons for millimeter waves,”
Proc. Symp. on Millimeter Waves, Polytechnic Inst. of Brooklyn,
Brooklyn, N. Y., pp. 249-250; March, 1959.
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and
72007 [log cot (¥/2)]?

z, = :
Ry [log cot (¥/2) + P(1 + cosec )]

(13)

Both Qo and Z, are thus smaller for this resonator, Z;
having around half the value for two re-entrant cones.
However, such a resonator could be useful in applica-
tions where a number of closely spaced cavities are re-
quired.

Fig. 7—Hemispherical conical resonator.

B. Coupling Considerations

Ideas on possible forms of coupling into such a reso-
nator arise when it is considered as a distortion of the
planar Fabry-Perot interferometer. Hence the design of
the whole array of coupling holes will be similar, except
now they will be on the surface of the spherical portion
and focused radiation must be used as indicated in the
figures. The intrinsic impedance of the principal mode is
that of free space, viz, Ey/Hys=mn, and the characteristic
impedance Z, may thus be regarded as derived from
series and parallel combinations of elemental parallel-
plate transmission lines, the number of which are deter-
mined by the hole spacings on the spherical surface.
Since the number of such holes at fixed spacings around
the circle § =constant on the sphere varies as sin 8, a
resultant Z, of the form given by (6) is obtained.

From such general considerations, we deduce that the
impedance transformations through the equally spaced
holes on the spherical surface are identical, since the
electric and magnetic walls into which the cavity can
be divided give rise to a system of equal parallel-plate
transmission lines with intrinsic impedance 5. The am-
plitude transmission coefficients are also identical for
all such holes, and since the number of holes around a
given latitude varies as sin 6, and the fields vary as
1/sin 6, the total power transmission from the cavity is
the same along each line of latitude. The holes can thus
be equally spaced along circles of latitude; some adjust-
ment of the final hole along such a circle will, however,
be necessary in general. The same spacings in the 0
direction may also be used, but the lines of hole centers
need not coincide with lines of longitude.
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The biconical resonator may be regarded as a trans-
mission line of length #\/4, and of characteristic im-
pedance Z, given by (6). The impedance across the cone
apices for any uniform impedance Z, over the spherical
boundary is then given by

Z,+ jZ. tan B

Z =7 )
Z.+ 77, tan Bl

(14)
and for I=nN/4, Z=Z*/Z,. For a coupling hole system
extending over the complete spherical surface, Z; will
be uniform over the surface and may be deduced from
the equivalent circuit for such a coupling hole. Thus, the
load impedance at the apices can be determined, and
hence the degree of loading as compared with the shunt
impedance Z, of the resonator can be deduced.

Another approach which is useful when only a part
of the spherical surface has coupling holes, and also in
the previous case, is to use the general formulas’ to
determine the Q factor and the shunt impedance Z,. The
impedances transformed from free space through such
holes give rise to increased losses over that portion of the
spherical boundary concerned, and the external Q values
and load impedances can be determined. Thus the result
for the increased power loss due to the load coupling
will be given by

W, = 1R f H A, (15)
where the limits of integration for ¢ and # extend over
the coupling region on the sphere, and R is the resistive
part of the load impedance at the spherical boundary.
In this way the effect of various degrees of coupling can
be considered and loaded @ values and load impedances
determined. A number of coupling holes are thus re-
quired, and this approach should be reasonably valid if
the area over which energy is coupled into or out of the
resonator is large compared with the wavelength; other-
wise diffraction effects will be serious. Since such reco-
nators are intended for very short wavelengths this con-
dition can be satisfied.

The coupling may thus be deduced from the equiv-
alent circuit for a single coupling hole in a metal plate,
which is shown in Fig. 8. Values of the susceptances are
given by the following equations.!*

B | Yo, ’ [13
B, = —+4+ —tanh <*—>,
27, Yo ¥

| vy 2t
By = csch >, (16)
vy i hve {
where in our case B/2Y,=(3a?\)/(2wD?), and
| vy |  0.284a, 1.706 D\ 742
(]
Vo D? A

14 N, Marcuvitz, “Waveguide Handbook,” M.I.T. Rad. Lab. Ser.,
McGraw-Hill Book Co., Inc., New York, N. Y., pp. 408-412; 1951.
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approximately. Here @, refers to the large dimension of
a rectangular waveguide propagating only the dominant
mode, and ’)\g” is given in reference 14. For matched
conditions in free space, the transformed normalized

impedance at the inside wall of the sphere is then given
by

7 - By? + j(Bos + By) (B2 + 2B.By + 1)

18
(B.2 + 2B.By)?* + (B, + By)? (18)
-0 —
f\}f\ } N
O < \/; £ ISSi'
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~1Ba ~18a
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Fig. 8—Perforated metal plate and equivalent transmission
line circuit electric wall , magnetic wall ---.

The phase angle of the reflection coefficient at the spher-
ical boundary may thus be determined, and the effect
of transformed reactances on the resonance condition
investigated for various hole configurations and wall
thicknesses. This is important since the resonance con-
dition demands a uniform phase shift over the spherical
surface, and the phase changes occurring in regions
where there are coupling holes differ from those at a
metal wall. However, the phase change for holes in thick
walls is not very different from that due to holes in the
thinner walls where coupling is effected. This occurs be-
cause all holes are circular waveguides excited beyond
cut-off, and the reactive contribution to the transformed
impedance is close to that due to the hole at the inner
surface of the sphere.

Thus, areas other than those used for energy transfer
could possibly have thicker walls with holes similar to
those in coupling areas. It may also be possible by
suitable impedance transformations to have holes only
in such coupling regions, with the remaining parts of
the metallic spherical surface undisturbed. This would
be a more satisfactory arrangement, and while the prob-
lem of coupling requires experimental evaluation, it
seems clear that it can be done along the lines described.

HicaER-ORDER MODES

So far, we have tacitly assumed the existence of only
the principal mode in the biconical resonator, and we
must now consider whether difficulties can arise from
the higher-order modes which can also exist in it. The
problem has been extensively treated by Schelkunoff in
his work on antennas.® With an impressed RF voltage
between the apices of the cones, the modes in question
are the transverse magnetic spherical ones with I, =0.
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As we have seen, in the biconical region a principal
TEM wave exists with the electric field lines terminat-
ing normally to the conical surfaces. A continuation of
this mode into free space is not possible, and in the case
of the biconical antenna, other modes are generated at
the spherical boundary between {ree space and the ends
of the cone. The boundary conditions at the spherical
boundary between the fields in the antenna region and
the fields of spherical TM waves in free space may then
be satisfied. Fig. 9 shows the electric field configuration
for the first-order TM spherical wave in free space and
in the biconical region respectively. The field patterns
are quite similar, the difference being the presence of
the small loops near the conical conductors which satisfy
the boundary conditions for the electric field. The pat-
terns for modes of higher-order are quite similar, except
that the number of loops increases. Such field configura-
tions are directly analogous to the electric field patterns
of higher-order TM,, modes between parallel plates and
arise from appropriate distortions of such plates. If b is
the spacing between the plates, the cut-off wavelengths
for these modes are given by 2b/n.

)

(a)

Fig. 9—Electric field of first order TM spherical wave. (a) In free
space. (b) With conical conductors. Magnetic lines circles coaxial
with cones.

In the proposed biconical resonator, the fields are en-
closed by a metallic spherical boundary on which the
boundary conditions on the field may be satisfied by
the fields of the dominant TEM wave, the electric field
of which is given by

Iysing(l — 7)

Eq = jn .
J 27y sin 0

(19)
where I is the maximum current at *=1/, and / is the
radius of the sphere.® Thus, no higher-order modes arise
at such a boundary, and this is still true when the cou-
pling holes are present since these are spaced less than
N/2 apart. The fringing fields at the holes then corre-
spond to non-propagating modes between parallel plates
and represent a localized impedance at the spherical
boundary. It follows then that no higher-order modes
should exist in the resonator when the radius of the in-
put region 7, is very small, or when the cones are pointed.
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Such higher-order modes may be generated in the input
region around the apices of the cones if this is finite in
extent, and this must be considered.

Expressions for such fields are given by Schelkunoff?
and are independent of the angle ¢. We shall be con-
cerned with 6 component of the electric field, which is
given by

B ZZ sin @

n 1 d ’
2:; oy 5 m M, (cos 6)S,(8r).

+7 (20)
Here M,(cos ) =1%[P,(cos8) —P,(—cosb)], P, being
the Legendre function of order #, and

Sn(ﬁr) = An]”n(ﬂf) + Bmwnn(ﬁr), (21)

where Jn,(87) and N#,(8r) are the normalized Bessel
functions of the first and second kind, and 4, and B,
are constants determined from the boundary conditions.
Values of n over which the summation in (20) is made
are determined by the relation

M, (cosy) = 0, (22)

which corresponds to the condition £,=0 on the conical
surfaces. Generally, the values of # are not integral and
may be determined from the formula?®

_ <2m7r gz g
72’"(¢_[w—2¢> _Z] R

where m=1,2,3, - - -.

The component Eg of the electric field must vanish at
the spherical boundary for all values of 8, and hence
from (20) we must have

(23)

S8l = 0, (24)

expressing the resonance condition for any higher-order
mode. For perturbations of the input region around the
cone apices, the field at a specific input radius 7; may be
expanded in terms of the orthogonal properties of
Legendre functions and their derivatives; to obtain

Ty d
f r.Eo(r.) sin § — (M, cos 0)db
v de
E, =, ) (25)

Ty d 2
f sin0|:— M, (cos 0)j| de
. d8

[9Sa"(Br)]/[2mn(n 4+ 1)] = En.

where

(26)

The values of the constants 4, and B, in (21) are now
determined from (24) and (26) and will be small if the
radius 7, is small. Hence for pointed cones in close prox-
imity at the center, operation in the TEM mode without
serious excitation of unwanted modes is feasible. This
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also follows, because Nu,(B87;) becomes infinite when
r,—0, and hence B, must be zero in this case.

As an approximation to the resonance condition we
may assume that /£, =0 for small input regions or values
of 7,. Then we find from (26) that

B,/ A, = — T'n,(8r)/ N'n,(Br.), 27
and hence (24) becomes
T8O N 1,(Br) — N'n, (BT 'n,.(8r:) = 0. (28)

But it follows from (27) that B,/A4, tends to zero for
small values of Br,, particularly for large values of .
Hence for small perturbations of the input region, the
resonance condition for higher modes is given by

J'n,(Bl) = 0, (29)

and we have already noted that the amplitudes of such
modes will also be small in this case. Such higher modes
would also not exist if 7,Es(r,) =0 for all 8, which occurs
when the apices are joined by a metallic sphere in the
input region. Other perturbations can be considered for
specific cases, such as for a klystron type resonator, and
would have to be investigated. The prime criterion is
that the transition of the spherical fields of the TEM
mode to those in the input region should be smooth
and the field patterns matched as far as is possible.
This can be approached by suitable shaping in such
regions, and hence mode generation kept small.

Eq. (29) represents the condition for resonance in a
higher-order mode, and for the large values of B8/ ap-
plicable here, we may write

Jn,(Bl) =~ sin (8] — nw/2),

and hence
J' 1, (Bl =~ cos (B — nw/2), (30)
which gives the condition for resonance as
[=Q2m4+ 1+ N4 m=1,2,3---. (31

Here 7 is not an integer in general, and this resonance
condition can differ from that required for the principal
mode. Thus even though higher-order modes are pos-
sible, depending on the shape of the input region be-
tween the cones, it may be possible to differentiate
against them as regards resonance. We remark again
that for small input regions, or perturbations, the ampli-
tudes of such modes will be small and, in general, may
be kept small by suitable transitions between the field
regions in the resonator.

CONCLUSIONS

The basic ideas presented here appear to have con-
siderable promise and significance for future work at
mm and sub-mmm wavelengths. Some results on a planar
tvpe of Fabry-Perot interferometer with high resolution
may have already been given.* This interferometer
represents the solution to the wavemeter problem for
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this wavelength region. The very high Q values already
obtained at 6 mm wavelengths and the increases possible
at very short wavelengths indicate its great potential
use in all phases of millimeter-wave spectroscopy and
maser research. A gaseous maser at a wavelength of
3.4 mm, using such an interferometer as the resonator,
is under active development. Applications of this inter-
ferometer to solid state masers at sub-mm wavelengths
are also feasible. As indicated, the curved reflector or
focused type of Fabry-Perot interferometer may find
similar -applications at very short sub-mm or infrared
wavelengths, and it represents an interesting problem
for future investigation.

The new developments on the biconical spherical reso-
nator which stem from the Fabry-Perot interferometer
investigations appear quite significant. Suitable reso-
nators are needed for electronic generation at mm wave-
lengths, for solid state masers at mm and sub-mm wave-
lengths, and for many other areas of research in this im-
portant wavelength region. The biconical resonator is a
possible solution to this problem. The development of
such a klystron resonator at reasonable orders of inter-
ference would materially help in the major problems of
small size, circuit losses and heat dissipation in conven-
tional resonators at these short wavelengths. There re-
mains the problem of obtaining the required current
densities from cathodes presently available, since the
efficiency of electronic interaction with the resonator
depends on the gap diameter as well as on the transit
time across the gap.'® However, the use of such a reso-
nator would certainly assist in the generation of still
shorter mm wavelengths, and would possibly permit
greater ease in fabrication and greater power outputs
to be obtained at wavelengths now possible. Higher-
order modes in such a resonator have been discussed,
and relatively mode-free operation should be possible.
Further work must be done on the investigation of these,
and on mechanical tuning methods.

In solid-state maser research this cavity represents a
possible solution to the difficult problem of a resonator
for a two-level, solid-state maser. This may well repre-
sent one method of obtaining relatively high-pulsed
powers at mm and sub-mm wavelengths.’® One of the
major problems, that of obtaining a high Q cavity, ap-
pears to be adequately met by the biconical resonator,
and for ideal conical geometries inside the sphere, mode
troubles should not arise. Specimen shapes would con-
form to the field geometry at the cone apices or com-
pletely fill the cavity with the dc magnetic field suitably
oriented along the axes of the cones, or along any other
preferred direction. The proposed method of coupling
would be extremely desirable in all such areas, since it
would eliminate the necessity for long lengths of small
waveguide into the low temperature bath. The Q of the
cavity would also increase at low temperatures. Similar

15 J. R. Singer, “Masers,” John Wiley and Sons, Inc., New York,
N. Y., pp. 71-87; 1959,
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remarks apply to the three-level, solid-state maser.

Although further development of these resonators is
required, such developments appear feasible in contrast
to the present difficulties in applying conventional reso-
nators to mm and sub-mm wavelengths. Such difficulties
are very severe and most probably conventional reso-
nators are impractical. There appears to be no reason
why the ideas presented here should not be intensively
pursued, as the rewards and knowledge to be gained
from this wvirtually unexplored region of the electro-
magnetic spectrum are very great.

Note added in proof: The biconical spherical resonator
has now been operated very satisfactorily by Dr. R. W.
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Zimmerer at wavelengths around 8 mm. The diameter
of the sphere used was 4 inches, and the cone angle ¥
was 45°. Coupling holes after the manner described were
used only in areas illuminated by the focused radiation.
Both quarter-wavelength and half-wavelength reso-
nances were observed and were the dominant ones. The
Q value approaches the theoretical one, and higher mode
effects are small.
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A Recording Microwave Spectrograph*

D. ILIAS}, MEMBER, IRE, AND G. BOUDOURIS], SENIOR MEMBER TRE

Summary—The principle of operation and the fundamentals of
realization of a recording microwave spectrograph designed for use
in the study of the absorption and the index of refraction of gases un-
der medium pressures (1 mm Hg to 1 atm) are presented. The ap-
paratus results from a similar spectrograph with synchroscope, in
which the responses of the cavity resonators are interpreted by
means of a pulse method. The high performances of the apparatus
render its use advantageous, not only as a spectrograph, but also as
an accurate recording refractometer, as well as a direct-reading Q-
meter.

I. INTRODUCTION

HE IDEA of the application of the pulse tech-
Tnique to microwave spectrographs with cavity
resonators [12] was originally suggested in 1953
by Professor A. Gozzini of the University of Pisa (Italy)
and his coworkers [2d]. Spectrographs of this type, al-
though subject to continuous improvements, have been
constructed in Pisa (Istituto di Fisica), in Paris (Labo-
ratoire de Physique de I’Atmosphere) and in Amsterdam
(Natuurkundig Laboratorium Universiteit). The new
experimental setup has already been used successfully
in various investigations [3]-[7].
The electronic indicator of this apparatus is an oscil-
lograph used as a synchroscope. The result of the meas-

* Received by the PGMTT, August 4, 1960; revised manuscript
received October 31, 1960.
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the Sorbonne Paris, France.

I Laboratoire de Spectroscopie Hertzienne, Faculty of Sciences,
Sorbonne University, Paris, France. Formerly with Laboratoire de
Physique de I’Atmosphére.

urement is given by the relative positions of the pulses
which appear on the screen of the synchroscope. In the
following, we will refer to this apparatus as the “spectro-
graph with synchroscope.”

The work described here makes use of this spectro-
graph to function as a recording instrument. As an out-
put indicator, the synchroscope is replaced by an auto-
matic recorder. The absorption coefficient or the index
of refraction is recorded as a function of the pressure of
the gas. The apparatus works, as does the previously
mentioned spectrograph with synchroscope, in the
centimetric (as well as in the millimetric) region of radio
waves and is used in the study of gases under medium
pressures (from about 1 mm Hg to 1 atm).

This function has been obtained through suitable
modifications of the electronic parts of the instrument,
especially those of the pulsers. The resulting recording
spectrograph extends the possibilities of research in the
field of microwave spectroscopy since it can also be used
as a refractometer and as a Q-meter.

[I. THE PRINCIPLE OF THE SPECTROGRAPH
WITH SYNCHROSCOPE

The original spectrograph with synchroscope has been
the subject of previous papers [2a], [5]. Briefly its
principle is as follows.

The block diagram is shown in Fig. 1. The energy of
the microwave source (a klystron) is frequency modu-
lated by means of an isosceles triangular signal. The
modulated energy is guided both to the channel of meas-



